NASA TECHNICAL **MEMORANDUM**

NASA TM X-53145

October 2, 1964

EVALUATION OF HIGH ACCURACY PRODUCTS CORPORATION MODEL PC-202 AUTOMATIC PARTICLE COUNTER

	GIOTINIOE V
by J. O. ROMINE AND J. B. GAYLE Propulsion and Vehicle Engineering Laboratory	OTS PRICE(S) \$
	Hard copy (HC) /, UO
NASA	Microfiche (MF) <u>0.50</u>

George C. Marshall Space Flight Center, Huntsville, Alabama

N 65	12019	
(ACC	ESSION NUMBER)	(THRU)
z g e	21,	/
_	(PAGES)	(CODE)
TM	x 53145	14
2 ///	OP THY OR AD NUMBER)	(CATEGORY)

GPO PRICE

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53145

EVALUATION OF HIGH ACCURACY PRODUCTS CORPORATION MODEL PC-202 AUTOMATIC PARTICLE COUNTER

 $\mathbf{B}\mathbf{y}$

J. O. Romine and J. B. Gayle

MATERIALS DIVISION
PROPULSION AND VEHICLE ENGINEERING LABORATORY

TECHNICAL MEMORANDUM X-53145

EVALUATION OF HIGH ACCURACY PRODUCTS CORPORATION MODEL PC-202 AUTOMATIC PARTICLE COUNTER

By

J. O. Romine and J. B. Gayle

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

In a previous investigation, it was shown that the HIAC Model 101 automatic particle counter gave excellent results for laboratory samples. However, marked discrepancies were noted between in-line automatic counter results and those determined microscopically for samples withdrawn from the system through a bleed valve.

To obtain further information on in-line monitoring of particulate contaminant, an improved HIAC counter (Model 202) was used to obtain in-line data for comparison with microscopic results for samples withdrawn from the system through an improved sampling arrangement. The results indicated that with suitable operating procedures the Model 202 counter gives results generally equivalent to those determined microscopically.

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
EXPERIMENTAL	2
DISCUSSION OF RESULTS	4
CONCLUSIONS	7
REFERENCES	16

TECHNICAL MEMORANDUM X-53145

EVALUATION OF HIGH ACCURACY PRODUCTS CORPORATION MODEL PC-202 AUTOMATIC PARTICLE COUNTER

SUMMARY

In a previous investigation, it was shown that the HIAC Model 101 automatic particle counter gave excellent results for laboratory samples. However, marked discrepancies were noted between in-line automatic counter results and those determined microscopically for samples withdrawn from the system through a bleed valve.

To obtain further information on in-line monitoring of particulate contaminant, an improved HIAC counter (Model 202) was used to obtain in-line data for comparison with microscopic results for samples withdrawn from the system through an improved sampling arrangement. The results indicated that with suitable operating procedures the Model 202 counter gives results generally equivalent to those determined microscopically.

The standard deviations for both microscopic and automatic results closely approached values predicted theoretically by means of the Poisson equation. This confirms the expectation that for a system with a uniform level of contamination and adequate sampling methods the reproducibility of results is determined almost entirely by the number of particles counted.

INTRODUCTION

Although the microscopic method currently is accepted as the standard for determining the level of particulate contamination in fluid systems, it has a number of undesirable characteristics. Specifically, the microscopic method is time consuming, involves a significant element of personal judgment, does not reproduce adequately, and is not adaptable to in-line monitoring of continuously operating systems. Therefore, this laboratory is investigating various types of automatic counting devices. In a previous investigation (Ref. 1), it was found that for laboratory samples the High Accuracy Products Corporation (HIAC) Model 101 Automatic Particle Counter gave results

that were virtually identical to those determined microscopically on the same sample. However, in-line results with this counter differed markedly from those obtained microscopically for samples taken from an ordinary bleed valve located just upstream of the counter. The cause of the discrepancy was not established, but it was considered evident that either the samples withdrawn for laboratory analysis or that portion of the total flow diverted through the counter for automatic monitoring was not representative of the average contamination level in the system. Also, it was noted that the relatively small flow rate through the counter ($\approx 1 \text{ ml/min}$) severely restricted the rate at which analyses could be made.

Because of these reasons, a further investigation was carried out using a High Accuracy Products Corporation Model 202 Counter. This counter was a later model than that previously investigated and could accommodate flow rates up to 35 ml per minute. The counter was fitted with a Maledco turbulent flow sampling valve to insure that the portion of the total flow diverted through the counter for monitoring was representative of the average concentration in the system. Also, for this study, the bleed valve used to obtain laboratory samples was relocated to provide more representative samples for microscopic analysis.

This report presents the results of the investigations carried out with the Model 202 Counter and includes results obtained previously with the Model 101 Counter which are directly applicable to the Model 202 Counter.

EXPERIMENTAL

The experimental setup (FIG 1) consisted of a hydraulic test cart, associated plumbing, and the HIAC Model PC 202 Particle Counter. The test cart, containing a 30-gallon reservoir, flow meters, pressure gauges, and filters, was modified so that the system fluid could either be circulated through the filters for cleanup or by-passed to maintain approximately uniform contamination levels during testing operations. When a test was carried out, the fluid was circulated through the test cart and system until the desired operating temperature, pressure, flow rate, and uniform contamination level were obtained. The operating conditions and particle count data for each test are summarized in

Table I. Six contamination levels are studied: the first was obtained by cleaning the hydraulic fluid to the lowest contamination level possible using the system filters; the other levels were obtained by introducing contaminated hydraulic fluid into the system reservoir to augment each preceding test level.

The Model PC-202 Counter was equipped with metering pistons and associated circuits for automatic in-line monitoring. When the counter was in operation, the fluid sample passed through the counting cell at flow rates up to 35 ml per minute and pressures up to 500 psi. Under these conditions, the flow characteristics were such that each solid particle passed an illuminated window in single file. Light was collimated and directed through the fluid stream to impinge on a phototube on the opposite side; when a particle in the fluid stream passed the window, a portion of the light beam was interrupted. This created a change in the output signal from the photo-tube which was proportional to the size of the particle. The change in signal was amplified and sent to counter circuits that had been adjusted to various sensitivities for simultaneous counting of individual size ranges. The particles then were tallied according to size. After passing through the cell, the sample was metered into a precision measuring piston so that the results could be recorded as number of particles per volume of fluid.

The counter was calibrated by use of the "built-in" calibration system that consisted of an interrupter disc driven by an electric motor, calibration potentiometer, light source, and calibration window (Ref. 2). The transparent interrupter disc had a scribed opaque radial line that was slightly wider than the calibration window through which the light was focused. Thus, for each revolution of the interrupter disc, the light was completely blocked when the radial line passed the calibration window. Since the calibration window area was known, the percent change in photo-tube output produced by a particle of given size could be calculated. The calibration potentiometer was used to select the desired particle size calibration. Suggested particle size calibration values were furnished by the manufacturer for use with the "built-in" calibration system.

The Model 202 Particle Counter, equipped with a C-150 microcell, was capable of monitoring four individual particle size ranges from 10 to 150 microns at 100-ml increments with printed read-out and using either the manually operated or the automatic sampling arrangement. For this investigation, the four selected size ranges were monitored

simultaneously for approximately three-minute intervals at 35 ml per minute sample flow rate. However, the total testing time was approximately five minutes per sample since the sample fluid that collected in the metering piston had to be removed by a back flushing operation. The sampling and back flushing operations were accomplished automatically by using solenoid valves actuated by relay switches that were located at opposite ends of the metering piston. After the sample had accumulated in the metering piston, the solenoid valves were actuated to return the sample to the system. The printer also was actuated automatically at the completion of each metering piston sampling stroke.

All microscopic analyses were made in accordance with MSFC-PROC-166A, "Procedure for Cleaning, Testing, and Handling of Space Vehicle Hydraulic System Components and Hydraulic Fluids," except the method of counting particles in the smaller size ranges where the total number of particles retained on the Millipore membrane were not always counted. In these instances, only the particles retained on one or two diametric scans (microscopic micrometer scale width x effective filtration diameter of filter paper) were counted. The number of scans examined was selected to give a minimum of 100 particles for each size range.

DISCUSSION OF RESULTS

Results obtained during this investigation for both microscopic and automatic (Model 202) counts are given in Table I. The mean values and standard deviations for each of the six contamination levels studied are given in Table II.

The reproducibility of counting data is dependent on the number of particles actually counted. Therefore, calculation of the reproducibility of the data in terms of standard deviations was based on the actual number of particles counted in all instances. Standard deviations for the HIAC and microscopic counts are shown in FIG 2 and 3 with the lines determined previously for microscopic counts on samples from hydraulic systems (Ref. 3) and theoretical values representing the standard deviations for a Poisson distribution. Since the earlier investigation was made using ground service hydraulic systems for which the contamination levels varied, contribution from this source would be expected to be smaller with the hydraulic test cart used in this investigation. In agreement with this expectation, FIG 2 indicates

that the standard deviations for both the HIAC and microscopic counts generally were smaller than the corresponding microscopic values reported previously. In fact, except for the highest counts, the determined values scattered more or less uniformly about those predicted theoretically by means of the Poisson equation. This suggests that in the current investigation variations due to system fluctuations have been largely eliminated, and the observed variations are generally indicative of those inherent to the test method.

In the previous investigation using the Model 101 Counter, it was shown that microscopic counts on portions of hydraulic fluid collected after passing through the counting cell were virtually identical to the automatic counts. In fact, it was shown that the small systematic deviations noted between the microscopic and automatic counts probably resulted because the automatic counts were based on equivalent circle diameters, and the microscopic counts were based on longest dimensions of the particles. By cross-plotting the counting data, equivalent circle diameters corresponding to the class boundaries for the MSFC acceptable contamination levels were determined. Confirmation of these values was obtained by microscopic determinations of equivalent circle diameters and longest dimensions for some 500 particles of various sizes. Because of the similarities in the two counters, equivalent results would be expected with the Model 202 Counter. Thus, this part of the investigation was not repeated.

In contrast to the excellent agreement determined with the microscopic and automatic counts made on the identical fluid sample, automatic counts obtained by diverting a portion of the total flow through the Model 101 Counter differed markedly from the microscopic counts obtained by withdrawing a laboratory sample from a bleed valve attached to the side opening of a horizontally positioned bleed valve located just upstream of the counter. Studies of sampling valves carried out after the investigation of the Model 101 Counter suggested that probably neither the automatic nor the microscopic counts were representative of the average contamination level in the system because of sampling problems. For this reason, the evaluation of the suitability of the HIAC Counter for in-line monitoring was re-investigated by using the improved Model 202 Counter and an improved arrangement for in-line sampling.

The corresponding microscopic and Model 202 Counter results for the different contamination levels are presented in FIG 4. Average values for these same data are cross-plotted in FIG 5. When this part of the investigation was carried out, the equivalent circle diameter class boundaries for the Model 202 Counter corresponding to the microscopic longest dimension class boundaries were the values determined previously (Ref. 1) by cross-plotting counting data obtained automatically and microscopically on the identical fluid samples. Although it was recognized that the exact relation between equivalent circle diameter and longest dimension varies with the origin and type of contaminant tested, the previous investigation, like the current one, utilized contaminated hydraulic fluid to adjust system contamination levels. Therefore, the determined class boundaries should be applicable to the current investigation. These values were as follows:

Class Boundaries, Microns

Microscopic (Longest Dimension)	Model 202 Counter (Equivalent Circle Diameter)
10-25	10.9 - 21.0
25-50	21.0 - 40.0
50-100	40.0 - 75.0
>100	>75.0

Straight lines passing through the origin were fitted to the data by the method of least squares. Equations for each size range are given in Table III with the standard errors for values calculated with the equation. Also included in Table III are identity equations of the type y=x and the corresponding root-mean-square deviation for each size range. Inspection of these data indicates that the slopes of the least square equations generally are close to unity, and the standard errors for values calculated with the least squares equation are only slightly smaller than the corresponding root-mean-square deviations for the identity equations. For these reasons, straight lines passing through the origin and having unit slopes corresponding to the identity equations are shown in FIG 4. Inspection of the plotted points indicates that the microscopic and Model 202 Counter results are virtually identical for the three smallest size ranges; the microscopic results generally exceeded the Model 202 Counter results for the largest (>100\mu) size range, particularly for the lower contamination levels. A review of the sampling arrangement suggested that this discrepancy may have been caused by failure of the bleed valve to provide representative samples for this size range because of the greater momentum of the particles. Further studies using a Maledco or similar sampling valve to withdraw samples for microscopic analyses are needed to resolve this question. However, the discrepancy is not great, and, in general, it appears that with suitable operating procedures the Model 202 Counter provides results equivalent to those obtained microscopically.

CONCLUSIONS

12019

The HIAC Model 202 Automatic Particle Counter gives results which appear to be generally equivalent to those obtained microscopically.

The reproducibility of particle counts for replicate samples taken from a well-regulated system approaches the values predicted theoretically by means of the Poisson equation. Therefore, the theoretical values reflect the inherent variability of the test results and constitute the lower limit for determined values.

Author

() MALEDCO TURBULENT FLOW SAMPLING VALVE (2.6-6.0GPM)

- (2) BLEED VALVE USED FOR WITHDRAWING SAMPLES FOR MICROSCOPIC COUNTS (3) LINE FOR SUPPLYING SYSTEM PRESSURE TO METERING PISTON FOR BACK
 - FLUSHING OPERATION
- 4 LINE FOR SUPPLYING SAMPLE FLUID TO HIAC COUNTER, ALSO RETURN LINE FOR BACK FLUSHING OPERATION
- (S) LINE FOR EMPTYING FLUID FROM METERING PISTON DURING SAMPLING OPERATION

FIGURE 1 TEST ARRANGEMENT

FIGURE 4 COMPARISON OF MICROSCOPIC AND HIAC MODEL PC 202 PARTICLE COUNTS

TABLE I. SUMMARY OF HIAC MODEL PC 202 AND MICROSCOPIC RESULTS

COUNT Sample # FIRESTER FLOW RATTORS COPIC HIAC MICROSCOPIC MICROSCOPIC HIAC MICROSCOPIC HIAC MICROSCOPIC <t< th=""><th>SIZE RANGE, MICRONS</th><th>3E, S 10</th><th> 25</th><th>25</th><th>- 50</th><th>- 05</th><th>- 100</th><th>>100</th><th>00</th><th>TEST CONDITIONS*</th><th>IONS*</th></t<>	SIZE RANGE, MICRONS	3 E, S 10	25	25	- 50	- 05	- 100	>100	00	TEST CONDITIONS*	IONS*
222 196 8 11 1 4 0 0 285 232 10 8 0 1 0 0 0 284 232 10 8 0 1 0 0 0 285 214 10 8 0 1 0 0 0 285 213 17 11 0 1 0 0 0 421 415 16 152 16 12 0 0 0 421 415 16 172 16 2 0 0 0 421 415 16 172 16 14 1 4 0	COUNT	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC	SYSTEM PRESSURE PSI	SYSTEM FLOW RATE GPM
222 196 8 11 1 4 0 0 285 232 10 8 1 1 0 0 0 285 233 10 8 0 1 0 0 0 285 214 10 8 0 1 0 0 0 285 214 10 8 12 0 0 0 0 41 483 161 11 1 0 0 0 0 0 451 483 164 15 16 14 1 4 451 415 161 17 16 14 1 4 452 20 18 16 15 16 19 1 40 5 455 431 174 165 22 22 0 40 5 512 410 17 16	Samule #										
222 196 8 11 1 4 0 0 4 294 232 10 8 11 0 1 0 0 6 4 294 232 10 1 0 0 0 0 4 222 205 214 10 11 0 0 0 0 0 4 421 483 161 171 10 0	Dainbie #										
285 232 10 8 0 1 0 60 69 44. 288 214 23 7 11 0 1 0 0 6 60 6 6 44. 288 214 40 1 1 0 0 0 0 6 <td>1</td> <td>222</td> <td>196</td> <td>œ</td> <td>11</td> <td></td> <td>4</td> <td>0</td> <td>0</td> <td></td> <td></td>	1	222	196	œ	11		4	0	0		
294 233 7 11 0 1 0 500 44. 225 214 10 8 12 0 0 0 60 44. 611 443 161 171 36 31 3 4 6 0 0 0 9 44. 6 10 0 0 0 0 0 0 44. 6 11 1 1 0	2	285	232	10	∞	0	-	0	0		
285 214 10 8 0 0 611 483 16 171 36 31 0 0 611 483 161 171 36 31 3 4 421 483 161 171 16 19 0 0 455 431 161 171 16 19 0 5 455 431 174 165 26 22 0 5 912 486 179 171 16 27 0 4 912 866 100 170 171 16 27 0 4 928 814 93 16 15 24 0 3 400 928 814 93 16 15 26 27 0 1 400 103 103 107 17 24 27 2 2 1 <t< td=""><td>3</td><td>294</td><td>233</td><td>7</td><td>11</td><td>0</td><td>1</td><td>0</td><td>0</td><td>200</td><td>4.0</td></t<>	3	294	233	7	11	0	1	0	0	200	4.0
222 205 8 12 1 1 0 0 451 448 161 171 36 31 3 4 421 448 159 159 152 19 0 1 400 434 438 169 159 23 19 0 1 400 445 488 179 169 159 22 0 5 4 512 488 179 171 16 19 0 4 4 512 488 179 171 16 19 0 3 400 512 488 179 171 16 120 24 0 3 400 512 972 131 135 26 24 0 3 400 1140 1104 93 36 122 27 2 3 400 1140 1102 <td>4</td> <td>285</td> <td>214</td> <td>10</td> <td>80</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td></td> <td></td>	4	285	214	10	80	0	2	0	0		
411 483 161 171 36 31 3 4 421 415 159 152 16 14 1 5 421 415 159 152 26 22 0 5 455 431 174 165 26 22 0 5 455 431 174 165 26 22 0 5 512 488 179 171 16 19 0 4 947 864 179 171 16 27 0 1 941 874 131 135 26 24 0 3 400 1014 979 107 24 27 2 3 400 3 400 3 400 4 400 400 400 400 400 400 400 400 400 400 400 400 400 400 <t< td=""><td>5</td><td>222</td><td>205</td><td>80</td><td>12</td><td>1</td><td>-</td><td>0</td><td>0</td><td></td><td></td></t<>	5	222	205	80	12	1	-	0	0		
421 415 159 152 16 14 1 5 455 431 169 159 23 19 0 1 400 455 431 174 165 26 22 0 6 5 912 488 179 171 16 19 0 3 947 866 100 120 23 24 0 3 1250 972 131 126 24 0 3 400 1250 972 131 125 24 0 3 400 1250 972 131 122 24 0 3 400 1014 979 109 107 24 27 2 14 0 3 400 1127 129 382 385 122 92 5 14 0 3 400 0 14 0 14 <td>I</td> <td>611</td> <td>483</td> <td>161</td> <td>171</td> <td>36</td> <td>31</td> <td>3</td> <td>4</td> <td></td> <td></td>	I	611	483	161	171	36	31	3	4		
343 398 169 159 23 19 0 1 400 455 488 179 174 165 26 22 0 5 6 512 488 179 171 16 19 0 4 4 947 866 100 120 23 19 0 3 400 1250 972 131 135 26 24 0 3 400 1014 979 109 107 24 27 0 1 400 1104 979 109 107 24 27 0 3 400 1104 979 109 107 24 27 2 3 400 1014 979 109 107 24 27 2 3 400 1120 323 382 132 132 125 5 14 <t< td=""><td>2</td><td>421</td><td>415</td><td>159</td><td>152</td><td>16</td><td>14</td><td></td><td>ις.</td><td></td><td></td></t<>	2	421	415	159	152	16	14		ις.		
455 431 174 165 26 22 0 5 947 866 107 171 16 19 0 4 928 814 93 179 171 16 19 0 3 928 814 93 10 171 151 27 0 1 1250 972 131 135 26 24 0 3 400 1014 979 109 107 24 27 0 1 1014 824 117 131 18 20 3 400 1014 824 177 24 27 2 3 400 1120 323 385 122 92 5 14 400 1727 1605 381 415 115 106 3 400 1727 1628 381 421 121 125 5	3	343	398	169	159	23	19	0		400	5.0
512 488 179 171 16 19 0 4 947 866 100 120 23 19 0 3 928 814 93 96 120 23 19 0 3 1250 972 131 135 26 24 0 3 400 1104 974 131 135 26 27 0 3 400 1014 824 117 131 18 20 3 400 1104 824 117 131 125 92 3 14 1400 1102 323 385 122 92 5 14 1727 1295 381 415 115 106 3 400 1726 415 115 125 92 5 14 1874 415 115 106 3 400 2102 <td>4</td> <td>455</td> <td>431</td> <td>174</td> <td>165</td> <td>97</td> <td>22</td> <td>0</td> <td>ĸ</td> <td></td> <td></td>	4	455	431	174	165	97	22	0	ĸ		
947 866 100 120 23 19 0 3 1250 928 814 93 96 15 27 0 1 1250 972 131 135 26 24 0 3 400 1014 979 109 107 24 27 0 3 400 1014 979 109 107 24 27 0 3 400 1014 979 109 107 24 27 0 3 400 1014 979 107 12 24 27 0 2 3 400 172 120 38 38 38 12 14 1 400 1 1 400 1 400 1 1 400 1 1 400 1 1 400 1 1 400 1 1 1 1 1	5	512	488	179	171	16	19	0	4		
928 814 93 96 15 27 0 1 1250 972 131 135 26 24 0 3 400 1014 979 109 107 24 27 2 3 1014 824 117 131 18 20 0 2 1400 1102 323 382 387 122 92 5 14 1127 1295 382 387 131 125 5 14 1127 1265 381 421 115 106 3 8 400 1126 381 421 115 106 3 8 400 2202 168 383 396 108 73 6 7 7 3204 3295 139 10 35 8 400 6 3 8 400 6 11 1 1		947	866	100	120	23	19	0	3		
1250 972 131 135 26 24 0 3 400 1014 979 109 107 24 27 2 3 400 141 824 117 131 18 20 2 3 400 1400 1102 323 385 122 92 5 14 2 1400 1102 323 387 122 92 5 14 400 2 14 415 145 15 16 3 8 400<	2	826	814	93	96	15	27	0	-		
1014 979 109 107 24 27 2 3 941 824 117 131 18 20 0 2 1400 1102 323 385 122 92 5 14 1727 1295 381 415 131 125 5 10 1726 1605 381 415 115 106 3 8 400 1726 1605 381 415 121 89 2 11 2002 1668 383 396 108 73 6 7 3489 3295 139 210 35 38 1 5 3489 3295 139 210 3 6 7 3480 3295 122 145 21 0 6 400 2863 2447 100 131 14 21 0 9 48	٣	1250	972	131	135	97	24	0	3	400	5.0
941 824 117 131 18 20 0 2 1400 1102 323 385 122 92 5 14 1727 1265 381 415 125 5 10 1726 1668 381 415 115 106 2 11 1874 1562 415 421 121 89 2 11 2202 1668 383 396 108 73 6 7 3489 3295 139 210 35 38 1 5 3266 3071 108 120 2 10 400 2863 2447 100 131 14 21 0 9 2863 2447 100 131 14 21 0 9 2718 2193 65 101 10 14 1 3 4861 5778 <	4	1014	626	109	107	24	2.2	2	3		
1400 1102 323 385 122 92 5 14 1727 1295 382 387 131 125 5 10 1726 1605 381 415 115 106 3 8 400 1726 1668 381 421 121 89 2 11 6 2202 1668 383 396 108 73 6 7 7 3489 3295 139 210 35 38 1 5 11 7 3266 3071 108 169 28 25 0 6 6 7 7 400 6 7 7 400 6 7 400 6 6 7 7 400 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <td< td=""><td>5</td><td>941</td><td>824</td><td>117</td><td>131</td><td>18</td><td>20</td><td>0</td><td>2</td><td></td><td></td></td<>	5	941	824	117	131	18	20	0	2		
1727 1295 382 387 131 125 5 10 1726 1605 381 415 115 106 3 8 400 1726 1605 381 415 115 106 3 8 400 1874 1562 415 421 121 89 2 11 2202 1668 383 396 108 73 6 7 3489 3295 139 210 38 1 5 6 3019 2996 122 145 21 20 6 6 400 2863 2447 100 131 14 21 0 9 7 2818 5778 734 561 108 135 23 22 400 5518 5617 627 564 121 120 17 24 400 5582 5510 562	1	1400	1102	323	385	1 22	95	5	1 4		
1726 1605 381 415 115 106 3 8 400 1874 1562 415 421 121 89 2 11 2202 1668 383 396 108 73 6 7 3489 3295 139 210 35 38 1 5 3489 3295 139 169 28 25 0 6 3489 2396 122 145 21 0 6 9 2863 2447 100 131 14 1 3 400 2863 2447 100 131 14 1 3 22 4861 578 722 604 121 120 17 24 5518 561 62 89 18 20 400 5518 5510 64 48 74 67 8 12 53	2	1727	1295	382	387	131	125	5	10		
1874 1562 415 421 121 89 2 11 2202 1668 383 396 108 73 6 7 3489 3295 139 210 35 38 1 5 3489 3295 139 210 36 6 7 3266 3071 108 169 28 25 0 6 2863 2447 100 131 14 21 0 9 2863 2447 100 131 14 21 0 9 4861 5778 734 561 108 135 23 22 5556 6242 72 604 121 120 17 24 5518 5617 627 56 48 74 6 12 5318 5403 466 444 51 67 8 12	٣	1726	1605	381	415	115	106	3	8	400	5.4
2202 1668 383 396 108 73 6 7 3489 3295 139 210 35 38 1 5 3266 3071 108 169 28 25 0 6 3019 2996 122 145 21 20 2 10 400 2863 2447 100 131 14 21 0 9 6 2718 2193 65 101 10 14 1 3 3 4861 5778 734 561 108 135 23 22 4 5656 6242 722 604 121 120 17 24 4 5518 5617 627 551 89 18 20 400 5582 5510 466 444 51 67 8 12 5318 5403 466 484 <	4	1874	1562	415	421	121	68	2	11		
3489 3295 139 210 35 38 1 5 3266 3071 108 169 28 25 0 6 3019 2996 122 145 21 20 2 10 400 2863 2447 100 131 14 21 0 9 2718 2193 65 101 10 14 1 3 4861 5778 734 561 108 135 23 22 5656 6242 722 604 121 120 17 24 5518 5617 627 551 82 89 18 20 400 5582 5510 562 506 48 74 6 12 400 5318 5403 466 444 51 67 8 12	ις	2202	1668	383	396	108	73	9	7		
3266 3071 108 169 28 25 0 6 3019 2996 122 145 21 20 2 10 400 2863 2447 100 131 14 21 0 9 2718 2193 65 101 10 14 1 3 4861 5778 734 561 108 135 23 22 5656 6242 722 604 121 120 17 24 5518 5617 627 551 82 89 18 20 400 5582 5510 562 506 48 74 6 12 5 5318 5403 466 444 51 67 8 12	1	3489	3295	139	210	35_	38	_	5		
3019 2996 122 145 21 20 2 10 400 2863 2447 100 131 14 21 0 9 2718 2193 65 101 10 14 1 3 4861 5778 734 561 108 135 23 22 5656 6242 722 604 121 120 17 24 5518 5617 627 551 82 89 18 20 400 5582 5510 562 506 48 74 6 12 5318 5403 466 444 51 67 8 12	2	3266	3071	108	169	28	25	0	9		
2863 2447 100 131 14 21 0 9 2718 2193 65 101 10 14 1 3 4861 5778 734 561 108 135 23 22 5656 6242 722 604 121 120 17 24 5518 5617 627 551 82 89 18 20 400 5582 5510 562 506 48 74 6 12 5318 5403 466 444 51 67 8 12	ന .	3019	9662	122	145	2.1	20	2	10	400	
2718 2193 65 101 10 14 1 3 4861 5778 734 561 108 135 23 22 5656 6242 722 604 121 120 17 24 5518 5617 627 551 82 89 18 20 400 5582 5510 562 506 48 74 6 12 5318 5403 466 444 51 67 8 12	4	2863	2447	100	131	14	21	0	6		
5778 734 561 108 135 23 22 6242 722 604 121 120 17 24 5617 627 551 82 89 18 20 400 5510 562 506 48 74 6 12 5403 466 444 51 67 8 12	5	2718	2193	65	101	10	14	1	3		
6242 722 604 121 120 17 24 5617 627 551 82 89 18 20 400 5510 562 506 48 74 6 12 5403 466 444 51 67 8 12		4861	5778	734	561	108	135	23	22		
5617 627 551 82 89 18 20 400 5510 562 506 48 74 6 12 5403 466 444 51 67 8 12	2	5656	6242	722	604	121	120	17	24		
5510 562 506 48 74 6 5403 466 444 51 67 8	3	5518	5617	627	551	82	89	18	20	400	3.6
5403 466 444 51 67 8	4	5582	5510	562	909	48	74	9	12		
	5	5318	5403	466	444	51	67	80	12		

*FLUID TEMPERATURE FOR THESE TESTS WAS MAINTAINED AT 100+5°F.

AVERAGES OF 30 MICROSCOPIC AND 30 HIAC COUNTS FIGURE 5

TABLE I. SUMMARY OF HIAC MODEL PC 202 AND MICROSCOPIC RESULTS

Chicorn.	S 10	- 25	25	- 50	50 -	50 - 100	>100	00	TEST CONDITIONS*	IONS*
COUNT METHOD	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC	SYSTEM PRESSURE PSI	SYSTEM FLOW RATE GPM
1 0 1 0 1 0										
Sample #										
1	222	196	∞	11	-	4	0	0		
2	285	232	10	œ	0	1	0	0		
8	294	233	2	11	0		0	0	200	4.0
4	285	214	10	80	0	2	0	0		
ις	222	205	œ	12	1	-	0	0		
I	611	483	161	171	36	31	3	4		
2	421	415	159	152	16	14	-	ις		
٣	343	398	169	159	23	19	0	_	400	5.0
4	455	431	174	165	97	22	0	5		
Z.	512	488	179	171	16	19	0	4		
	947	998	100	120	23	19	0	3		
2	928	814	93	96	15	2.7	0			
3	1250	972	131	135	56	24	0	3	400	5.0
4	1014	616	109	107	24	27	2	33		
5	941	824	117	131	18	20	0	2		
1	1400	1102	323	385	122	26	5	14		
2	1727	1295	382	387	131	125	Ŋ	10		
3	1726	1605	381	415	115	106	3	∞	400	5.4
4	1874	1562	415	421	121	68	2	11		
5	2202	1668	383	396	108	73	9	7		
	3489	3295	139	210	35	38	_	ī.		
2	3266	3071	108	169	28	25	0	9		
٣.	3019	9662	122	145	21	20	2	10	400	5.4
- 4	2863	2447	100	131	14	21	0	6		
5	2718	2193	65	101	10	14	1	3		
1	4861	5778	734	199	108	135	23	22		
2	5656	6242	722	604	121	120	17	24		
3	5518	5617	627	551	82	89	18	20	400	3,6
4	5582	5510	562	506	48	74	9	12		
5	5318	5403	466	444	5.1	67	œ	12		

*FLUID TEMPERATURE FOR THESE TESTS WAS MAINTAINED AT $100\pm5^{\circ}$ F.

TABLE IL SUMMARY OF REPRODUCIBILITY OF RESULTS*OBTAINED FOR HIAC AND MICROSCOPIC SAMPLES

1								
SIZE RANGE,		26	25 - 50	20	50 - 100	100		> 100
MICRONS	10	07 -						
COUNT		7100 750 0017	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC	HIAC	MICROSCOPIC
METHOD	HIAC	MICKOSCOFIC	Carrie					
Mean	261.6	216.0	8.6	10.0	0.4	1.8	0.0	0.0
Standard Deviation	36.3	16.4						
			V 071	163.6	23.4	21.0	0.8	3.8
Mean	468.4	443.0	100.4 7.5	8.2	8.3	6.3	1.3	1.6
Standard Deviation	100.5	70.04						
		20 17	0 011	117.8	21.2	23.4	0.4	2.4
Mean	1016.0	165.8	14.8	16.3	4.5	3.8	6.0	0.9
Standard Deviation	135.0	14.0						
		2	0 / 1	400 8	119.4	97.0	4.2	10.0
Mean	1785.8	135.4	22 3	16.4	8.6	19.6	1.6	2.7
Standard Deviation	290.2	0.77	33.3					
		2000	0 701	151 2	21.6	23.6	0.8	9.9
Mean	3071.0	263.8	100.0	41 1	10.2	0.6	0.8	2.9
Standard Deviation	309.6	39.8	7.17	1111				
	,	27 /01	c cc7	533 2	82.0	97.0	14.4	18.0
Mean	5387.0	106.4	2.220	000	32.8	29.4	7.2	5.7
Standard Deviation	319.8	5.5	112.4	00.00) }			

1 All values based on results for five samples.

² Microscopic results for the 10-25 µ size range are the actual number of particles counted on millipore membrane where the total number was not counted.

TABLE III

EQUATIONS RELATING MICROSCOPIC AND HIAC COUNTS

Size Range, Microns	Least Squares Equations	Identity Equations
10-25	MC = 1.002 HC SMC = 296 particles or 16 percent*	MC = HC RMC = 296 particles or 16 percent*
25-50	MC = 0.921 HC SMC = 43 particles or 19 percent*	MC = HC RMC = 50 particles or 21 percent*
50-100	MC = 0.934 HC SMC = 13 particles or 29 percent*	MC = HC RMC = 14 particles or 31 percent*
>100	MC = 1.250 HC SMC = 4 particles or 58 percent*	MC = HC RMC = 5 particles or 75 percent*

MC = Microscopic count, number of particles

HC = HIAC count, number of particles

SMC = Standard error for microscopic count calculated from HIAC count for least squares equation

RMC = Root-Mean-Square deviation for microscopic count calculated from HIAC count for identity equation

^{*}Based on average microscopic count.

REFERENCES

- 1. Romine, J. O. and Gayle, J. B., "Evaluating the HIAC PC-101 Automatic Particle Counter," The Journal of the American Association for Contamination Control, January 1964, pp. 10-18.
- 2. "Operating Manual, HIAC Automatic Particle Counter Model PC-202, S/N8," High Accuracy Products Corporation, 141 Spring Street, Claremont, California.
- 3. Gayle, J. B. and Romine, J. O., "Studies on the Reliability of Particulate Contamination Analysis," The Journal of the American Association for Contamination Control, Part I, June-July 1962, pp. 7, 13, Part II, January 1963, pp. 6-7, 9-10.

EVALUATION OF HIGH ACCURACY PRODUCTS CORPORATION MODEL PC-202 AUTOMATIC PARTICLE COUNTER

By

J. O. Romine and J. B. Gayle

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

W. A. RIEHL

Chief, Chemistry Branch

W. R. LUCAS

Chief, Materials Division

F. B. CLINE

Acting Director, Propulsion and Vehicle Engineering Laboratory

DISTRIBUTION

AST-S Dr. Lange Mr. .Kuers R-ME-DIR Mr. Minter R-ME-A Mr. Beyerle R-ME-MMC R-ASTR-DIR Dr. Haeussermann R-ASTR-G Mr. Kelley R-ASTR-NF Mr. Kalange R-QUAL-DIR Mr. Grau R-QUAL-A Mr. Hillenbrand Mr. Pickard R-QUAL-AM R-TEST-SP Mr. Riggs R-TEST-SP Mr. Johnstone LVO-M Mr. Pickett LVO-M Mr. Rainwater R-P&VE-DIR Mr. Cline R-P&VE-V Mr. Aberg R-P&VE-A Mr. Goerner R-P&VE-S Mr. Kroll Mr. Schulze R-P&VE-VS R-P&VE-VMS Mr. Arther R-P&VE-P Mr. Paul R-P&VE-PA Mr. Reed R-P&VE-PAE Mr. Neiland R-P&VE-PM Mr. Fuhrmann R-P&VE-PE Mr. Bergeler R-P&VE-M Dr. Lucas (5) R-P&VE-MC (25)Mr. Kingsbury R-P&VE-ME R-P&VE-MM Mr. Cataldo R-P&VE-MN Mr. Shannon MS-IPL (8) Mr. Remer MS-IP Mr. Warden CC-P MS-H Mr. Akens Mr. Hofues R-P&VE-RT Mr. Wiggins MS-T

Douglas Aircraft Corporation Santa Monica, California 90405 Attn: Messrs. C. Seil/E. T. Lica

DISTRIBUTION (Continued)

North American Aviation Rocketdyne Division Canoga Park, California 91304 Attn: Messrs. Bielman/Williams

North American Aviation
Space & Information Systems Division
Downey, California 91341
Attn: Messrs. J. Diaz/J. Bantly/J. O. Lawes

The Boeing Company
Saturn Booster Branch
New Orleans, Louisiana 70126
Attn: Mr. S. Collis

Aerojet-General Corporation Holiday Office Center Huntsville, Alabama 35805 Attn: Mr. W. C. Lacy, District Manager

Chrysler Corporation Missile Division Detroit, Michigan 48224 Attn: Messrs. Knight/Zyla

SAE Contamination Control Panel General Dynamics/Astronautics San Diego, California 92112 Attn: Mr. H. D. Davis

ASTM Contamination Control Panel Lockheed Missiles and Space Company Department 81-13, Building 167 Burbank, California 91503 Attn: Mr. Joe Botkin

Millipore Corporation Bedford, Massachusetts 01730 Attn: Mr. W. Kenyon

DISTRIBUTION (Concluded)

Headquarters, Aeronautical Systems Division Air Force Systems Command, USAF Wright-Patterson Air Force Base, Ohio 45401 Attn: Mr. Sorro Prete (ASNSPH)

Chrysler Corporation Space Division Michoud Operations P. O. Box 26018 New Orleans 26, Louisiana 70126 Attn: Mr. W. Sennett

Aircraft Porous Media, Incorporated 31 Sea Cliff Avenue Glen Cove, New York Attn: Mr. J. Farris

Oklahoma State University Stillwater, Oklahoma 74075 Attn: Dr. E. C. Fitch

Scientific and Technical Information Facility (25) Attn: NASA Representative (S-AK/RKT) P. O. Box 5700 Bethesda, Maryland 20014